direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C2.C25, C2.6C26, C4.24C25, D4.12C24, C22.2C25, Q8.12C24, C23.98C24, C24.519C23, 2+ 1+4⋊13C22, 2- 1+4⋊12C22, C4○D4⋊10C23, (C2×D4)⋊23C23, (C2×Q8)⋊24C23, (C2×C4)○2- 1+4, C4○(C2×2- 1+4), C4○(C2×2+ 1+4), (C2×C4)○2+ 1+4, C4○(C2.C25), (C2×C4).619C24, (C23×C4)⋊54C22, (C22×C4)⋊20C23, (C22×D4)⋊67C22, (C22×Q8)⋊72C22, (C2×2+ 1+4)⋊17C2, (C2×2- 1+4)⋊15C2, D4○(C2×C4○D4), Q8○(C2×C4○D4), (C2×D4)○(C4○D4), (C2×Q8)○(C4○D4), C4○D4○2(C4○D4), (C2×C4○D4)⋊81C22, (C22×C4○D4)⋊30C2, (C2×C4)○(C2×2- 1+4), C4○D4○(C2×C4○D4), (C2×Q8)○(C2×C4○D4), (C2×C4○D4)○(C2×C4○D4), SmallGroup(128,2325)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C2.C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=1, g2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, dcd=fcf=bc=cb, ede=bd=db, be=eb, bf=fb, bg=gb, ce=ec, cg=gc, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 3308 in 2978 conjugacy classes, 2828 normal (5 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C22×C4, C2×D4, C2×Q8, C4○D4, C24, C23×C4, C22×D4, C22×Q8, C2×C4○D4, 2+ 1+4, 2- 1+4, C22×C4○D4, C2×2+ 1+4, C2×2- 1+4, C2.C25, C2×C2.C25
Quotients: C1, C2, C22, C23, C24, C25, C2.C25, C26, C2×C2.C25
(1 9)(2 10)(3 11)(4 12)(5 30)(6 31)(7 32)(8 29)(13 18)(14 19)(15 20)(16 17)(21 26)(22 27)(23 28)(24 25)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 22)(2 23)(3 24)(4 21)(5 16)(6 13)(7 14)(8 15)(9 27)(10 28)(11 25)(12 26)(17 30)(18 31)(19 32)(20 29)
(1 13)(2 14)(3 15)(4 16)(5 23)(6 24)(7 21)(8 22)(9 18)(10 19)(11 20)(12 17)(25 31)(26 32)(27 29)(28 30)
(1 14)(2 15)(3 16)(4 13)(5 24)(6 21)(7 22)(8 23)(9 19)(10 20)(11 17)(12 18)(25 30)(26 31)(27 32)(28 29)
(5 7)(6 8)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
G:=sub<Sym(32)| (1,9)(2,10)(3,11)(4,12)(5,30)(6,31)(7,32)(8,29)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,22)(2,23)(3,24)(4,21)(5,16)(6,13)(7,14)(8,15)(9,27)(10,28)(11,25)(12,26)(17,30)(18,31)(19,32)(20,29), (1,13)(2,14)(3,15)(4,16)(5,23)(6,24)(7,21)(8,22)(9,18)(10,19)(11,20)(12,17)(25,31)(26,32)(27,29)(28,30), (1,14)(2,15)(3,16)(4,13)(5,24)(6,21)(7,22)(8,23)(9,19)(10,20)(11,17)(12,18)(25,30)(26,31)(27,32)(28,29), (5,7)(6,8)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,30)(6,31)(7,32)(8,29)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,22)(2,23)(3,24)(4,21)(5,16)(6,13)(7,14)(8,15)(9,27)(10,28)(11,25)(12,26)(17,30)(18,31)(19,32)(20,29), (1,13)(2,14)(3,15)(4,16)(5,23)(6,24)(7,21)(8,22)(9,18)(10,19)(11,20)(12,17)(25,31)(26,32)(27,29)(28,30), (1,14)(2,15)(3,16)(4,13)(5,24)(6,21)(7,22)(8,23)(9,19)(10,20)(11,17)(12,18)(25,30)(26,31)(27,32)(28,29), (5,7)(6,8)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,30),(6,31),(7,32),(8,29),(13,18),(14,19),(15,20),(16,17),(21,26),(22,27),(23,28),(24,25)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,22),(2,23),(3,24),(4,21),(5,16),(6,13),(7,14),(8,15),(9,27),(10,28),(11,25),(12,26),(17,30),(18,31),(19,32),(20,29)], [(1,13),(2,14),(3,15),(4,16),(5,23),(6,24),(7,21),(8,22),(9,18),(10,19),(11,20),(12,17),(25,31),(26,32),(27,29),(28,30)], [(1,14),(2,15),(3,16),(4,13),(5,24),(6,21),(7,22),(8,23),(9,19),(10,20),(11,17),(12,18),(25,30),(26,31),(27,32),(28,29)], [(5,7),(6,8),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)]])
68 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2AG | 4A | 4B | 4C | 4D | 4E | ··· | 4AH |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 |
68 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 4 |
type | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2.C25 |
kernel | C2×C2.C25 | C22×C4○D4 | C2×2+ 1+4 | C2×2- 1+4 | C2.C25 | C2 |
# reps | 1 | 15 | 10 | 6 | 32 | 4 |
Matrix representation of C2×C2.C25 ►in GL5(𝔽5)
4 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 |
0 | 2 | 4 | 4 | 1 |
0 | 0 | 4 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 2 | 3 | 3 | 0 |
0 | 4 | 3 | 3 | 2 |
0 | 0 | 0 | 0 | 3 |
0 | 0 | 0 | 2 | 0 |
4 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 2 | 4 | 4 | 1 |
0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 4 | 0 |
4 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 4 | 1 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 3 |
G:=sub<GL(5,GF(5))| [4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[4,0,0,0,0,0,1,0,2,0,0,0,0,4,4,0,0,0,4,0,0,0,4,1,0],[1,0,0,0,0,0,2,4,0,0,0,3,3,0,0,0,3,3,0,2,0,0,2,3,0],[4,0,0,0,0,0,1,2,0,0,0,0,4,0,0,0,0,4,0,4,0,0,1,4,0],[4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,4,0,4,0,0,1,0,0,4],[4,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3] >;
C2×C2.C25 in GAP, Magma, Sage, TeX
C_2\times C_2.C_2^5
% in TeX
G:=Group("C2xC2.C2^5");
// GroupNames label
G:=SmallGroup(128,2325);
// by ID
G=gap.SmallGroup(128,2325);
# by ID
G:=PCGroup([7,-2,2,2,2,2,2,-2,925,723,2019,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=1,g^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,d*c*d=f*c*f=b*c=c*b,e*d*e=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*e=e*c,c*g=g*c,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations